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A map f: X — Y between topological spaces is called scatteredly continuous if for each
non-empty subspace A C X the restriction f|4 has a point of continuity. By SC,(X) we denote
the space of all scatteredly continuous real-valued functions on X endowed with the topology
of pointwise convergence.

In this paper we focus on the normality of the space SC,,(X). Particularly, it is proved that
if the function space SC),(X) is normal, then all compact and all scattered subspaces of X are
countable.

B. M. Boxkaso, H. M. Konoc. O nopmaavhocmu npocmpancme pa3pesiceno HenpepuieHbir 0mo-
bpasrcenut // Mar. Crynil. — 2011. — T.35, Ne2. — C.196-204.

Orobpazxenne f: X — Y MeXIy TOMOJOIMYECKUME ITPOCTPAHCTBAME HA3BIBAIOT Pa3pexKe-
HHO HeIIPEPBIBHBIM, €CJIH JIJIsl KasKI0ro HelrycToro noainpocrpancrsa A C X cyxxenue f|4 umeer
TouKy HenpepbiBHOCTH. Uepes SCp(X ) obo3nagaeM MpoCTPAHCTBO BCEX PA3PEIKEHHO HEIPEPHIB-
HBIX BEIEeCTBeHHBIX (DYHKIUI Ha mpocTpaHcTBe X B TOIOJIOIMH ITOTOYEYHON CXOIUMOCTH.

Uccnenyercst nopMansHocTs npocrpancrsa SCp,(X). B gacTaocTn, 10Ka3aHO, ITO €C/IH IPO-
crpancrso SCp(X) HOPMAIBHO, TO BCe KOMIIAKTHBIE U BCE PA3PEKEHHBIE IOIIPOCTPAHCTBA
mpocTpancTBa X CIETHBHI.

1. Introduction. A map f: X — Y between topological spaces is called scatteredly conti-
nuous if for each non-empty subspace A C X the restriction f|4 has a point of continuity.
By SC,(X) we denote the space of all scatteredly continuous real-valued functions on X
endowed with the topology of pointwise convergence. Clearly, that the space of all conti-
nuous maps C,(X) is a subspace of the space SC,(X), and the function space SC,(X) is
a subspace of the space RX. It is well known that the space R¥ is normal if and only if X is
countable. On the other hand, there are uncountable spaces X such that the function space
Cp(X) is normal, in particular if the network weight of X is countable. A natural questi-
on arises: under what conditions on a space X, is the space of all scatteredly continuous
functions SC,(X) normal? In this paper we prove, in particular, that if the function space
SC,(X) is normal, then all compact and all scattered subspaces of X are countable.

2. Terminology and notation. A “space” always means a “topological space”. By R and
Q we denote the usual spaces of real and rational numbers, respectively; N stands for the
set of integer positive numbers.

A standard base of neighborhoods of a function f: X — R in the space SC,(X) consists
of the sets of the form W (f,z1,...,xx,¢) = {g € SC(X): |g(x;) — f(x;)| < e,i =1,...,k}
with K € Nyzq,..., 2, € X and € > 0.
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For a subset A of a topological space X by clx(A) or A we denote the closure of A in X
while Int(A) stands for the interior of A in X.

Recall that a space X is called normal, if it is a Tj-space and for an arbitrary pair of
disjoint closed subsets F}, F5 of X there are open subsets U;, Us; of X such that F} C Uy,
FscUyand U NU;, = @.

All spaces encountered in this paper (unless stated otherwise) are assumed to be Haus-
dorff. The rest of the notation and terminology is standard and can be found in [1].

3. The restriction operator and the dual map. Let Y be a subspace of a space X. By
Ty : SCu(X) — SC,(Y) we denote the restriction operator from SC,(X) onto SC,(Y'), that
is my (f) = f|y for all f € SC,(X). The definition of a scatteredly continuous map implies
that my (SC,(X)) is a subspace of the space SC,(Y).

We say that a set A is dividing (see [2]), if there is a non-empty set F' such that AN F =
F—\A, and A is called undividing if AN F # F\A for arbitrary non-empty set F.

Obviously, all closed, open and scattered subsets of any topological space X are undivi-
ding. In [2] it is proved that if X is a hereditary Baire perfectly paracompact space, then
a subset A of X is undividing if and only if A is an F,-set and Gs-set in X.

Theorem 1 ([4]). Let f: X — Y be a scatteredly continuous map from a topological space
X to a regular topological space Y. Then each non-empty subspace A C X contains an open
(in A) dense subset U C A such that the restriction f|s : A — Y is continuous at every
point of the set U.

Proposition 1. For an arbitrary subspace Y of a topological space X the following state-
ments are true:

1. The operator my : SC,(X) — SC,(Y) is continuous and my (SC,(X)) D SC,(Y);

2. The operator my : SC,(X) — SC,(Y) is an open map from SC,(X) onto the subspace
Ty (SC,H(X)) of SC,(Y);

3. If'Y is an undividing set in X, then my (SC,(X)) = SC,(Y);
4. If'Y is a scattered subspace of a space X, then my (SC,(X)) = RY;
5. The operator 7y is injective if and only if Y = X.

Proof. 1. Obviously, my: SC,(X) — SC,(Y) is continuous. We prove that my (SC,(X)) D
SC,(Y). Take an arbitrary g € SC,(Y) and a standard neighborhood W (g, y1, ..., Yn, €) of
the point g € SC,(Y'). We define a function f: X — R as follows:

g<yl)7 YOS {ylu""yn}'

flz) = {0= € X\{y1, -, yn},

It is easy to check, that f € SC,(X) and 7y (f) € W(g, 1, .-, Yn, €)-

2. Consider an arbitrary standard open set W (f, 21, ..., x,¢) C SC,(X). Without loss of
generality, we may assume that zq,...,2; € Y and z4q,....,2, € X\Y with 0 < [ < k.
Obviously, my (W (f,x1,...,xx,€)) C W(my(f),x1,...,x1,6) N my (SCH(X)). We show that
my(W(f,x1,....,xx,€)) = W(ny(f), 1, ...,x1,€) N 7wy (SCH(X)), which implies that the set
my (W (f,x1,...,xx,€)) is open in the space 7y (SC,(X)). And this means that the operator
my : SCH(X) = SC,(Y) is open.
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It remains to show that my (W (f,z1,...,zx,€)) D W(ny(f), x1,...,21,€) N 7wy (SCH(X)).
Let g € my (SC,(X)) and |g(z;) — w(f)(x:)| < e, i =1,...,1. Since g € my (SC,(X)), there
is a map ¢; € SC,(X) such that g = my(g1). We fix a function ¢: X — R such that

p(r) = {0’ T ¢ {141, ..., Ti}

f(@) —gi(zi), = €{zg1, ... 21}

It is easy to check that the function ¢ is scatteredly continuous. Put h = ¢+g;. Obviously, h €
W(f,z1,...,x1,¢) and my(h) = g. Therefore, g € my (W (f, 21, ..., 21, ¢)) and the statement
(2) is proved.
3. Let Y be some non-empty undividing set in X. We show that my (SC,(X)) = SC,(Y).
Consider some map g € SC,(Y). Define a function f: X — R as follows:

_Jglx), €Y
o= {1 rey

It is easy to see that my(f) = g. Now show that f € SC,(X). Let A be an arbitrary non-
empty subset of X. Put P = ANY and @ = A\Y. According to Theorem 1, the space P
contains an open (in P) dense subspace U C P such that the restriction g|p is continuous
at every point of the set U. Put B = ((P\Q) NU) U (Q\P). Since Y is an undividing set in
X and U is dense in P, the set B # @&. Obviously, the restriction f|4 is continuous at every
point of the set B.

4. Since every scattered subspace of a topological space is an undividing set, then state-
ment 3 of this proposition implies that my (SC,(X)) = SC,(Y). Since Y is scattered,
SC,(Y) =RY.

5. Assume that Y # X. Fix an arbitrary point zo € X\Y and maps f;: X — R and
fo: X — R | which are defined as follows:

fie) = {0, v € X\ {m} fue) = {0, z € X\ {zo}
1, z=ux 2, x=umx
Observe that fi, fo € SC,(X), fi1 # fa, but 7y (f1) = 7y (f2). Thus, the map 7y is not

injective. O

Proposition 2. Let f: X — Y and g: Y — Z be scatteredly continuous maps and let Y
be a regular space. Then the composition go f: X — Z is a scatteredly continuous map.

Proof. Let A be an arbitrary subspace of X. By Theorem 1, the space A contains an open
(in A) dense subspace U C A such that the restriction f|4 is continuous at every point of
the set U. Using the scattered continuity of g, we find a continuity point y € f(U) of the
map ¢ ‘ sy - Take an arbitrary point x € f ~Y(y) N U and notice that the composition g o f
is continuous at the point z. O

The following example shows that the regularity of the space Y in the previous proposition
is essential.

Example 1. Let f: R — Rg be the identity map from the real line equipped with the
standard topology 7 to the real line endowed with the topology generated by the subbase
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7 U{Q}. Let xg: R — {0;1} denote the characteristic function of the set Q. It is easy to
show that the maps f: R — Rg and xg: R — {0;1} are scatteredly continuous while their
composition ygo f: R — {0; 1} is everywhere discontinuous (and hence fails to be scatteredly
continuous).

Recall that a space X is called a Preiss-Simon space if for an arbitrary non-empty closed
subset A of X and each point x € A there is a sequence {U,: n € N} of non-empty open
subsets of A that converges to x in the sense that each neighborhood of = contains all but
finitely many sets U,.

Lemma 1. Let f be a surjective map from a topological space X onto a topological space Y
and g be a map from the space Y to some topological space Z. Then scattered continuity of
the map go f implies the scattered continuity of the map g if one of the following conditions
is satisfied:

1) the map f: X — Y is open;

2) the map f: X — Y is closed, the space X is perfectly paracompact, Y is a hereditary
Baire Preiss-Simon space and Z is a regular space.

Proof. 1. Assume that the map ¢ = go f is scatteredly continuous and let f be an open map.
To show that g is scatteredly continuous, fix a non-empty subset B C Y and let A = f~1(B).
It follows that f|4: A — B is an open map. Since the map ¢ is scatteredly continuous, the
restriction ¢ [4: A — Z has a continuity point zo € A. We show that the map g|g : B — Z
is continuous at the point yo = f(x). Assume that O(g(yo)) is a neighborhood of the point
g(yo) in Z. Since ¢(xo) = ¢g(yo), there is a neighborhood O(zy) of the point zy in the
subspace A such that ¢(O(zg)) C O(g(yo)). Since the restriction f|4: A — B is an open
map, one has that f(O(x)) is a neighborhood of the point y,. It is easy to deduce that
9(f(O(x0))) = ¢(O(x0)) € O(g(yo))-

2. In [5], in particular, is proved that a map ¢ from a hereditary Baire Preiss-Simon space
Y to a regular space Z is scatteredly continuous if for any open subset in Z its preimage is
a Gs-set in Y. Suppose ¢ is not a scatteredly continuous map. Then there is an open set U
in Z such that ¢g1(U) is not Gs-set in Y.

On the other hand, since go f is a scatteredly continuous map from a perfectly paracom-
pact space X to a regular space Z, we obtain that (go f)~'(U) is a Gs-set in X (see [5]).

Put A= (go f)"(U) C X. Then f(A) = g }(U). Since A is a Gs-set in X, we have that
X\A is an F,-set in X, that is, X\ A = |J{F}: i € N} where each Fj is a closed subset in X.
Then f(X\A) = f(F}) is an F,-set in Y. But then Y\ f(X\A) = ¢~ (U) is a Gs-set in Y,
which is a contradiction. O

Example 2. Assume that f is a map from a scattered uncountable compact space X to
the segment Y = [0,1], and g¢: [0,1] — R is the characteristic function of the set Q. The
spaces X and Y are both compact. Obviously, the maps go f: X — R and f are scatteredly
continuous. But the characteristic function g: [0,1] — R is not scatteredly continuous.

Each f: X — Y induces a dual map f#: RY — R¥ that assigns to each function ¢ € RY,
the composition f#(p) = po f.

Proposition 3. Let X and Y be topological spaces and let f be a mapping of X to Y.
Then the following statements are true:
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1. The map f#: SC,(Y) — f#(SC,(Y)) is continuous.

2. If the map f is scatteredly continuous and the space Y is regular, then f#(SC,(Y)) C
SCH(X).

3. Let f be open scatteredly continuous surjective map and let Y be regular. Then f#
is a homeomorphism of the space SC,(Y) onto the closed subspace f#(SC,(Y)) of
SC,(X).

4. Let f be a closed scatteredly continuous surjective map, let X be perfectly paracompact
and let Y be a hereditary Baire Preiss-Simon space. Then f# is a homeomorphism of
the space SC,(Y') onto the closed subspace f#(SC,(Y)) of SC,(X).

5. If f is scatteredly continuous then f is injective if and only if f#(SC,(Y')) is dense in
SCH(X).

Proof. 1. In [3], in particular, is proved that the map f#: RY — R¥ is continuous for an
arbitrary map f: X — Y and arbitrary sets X and Y. Thus, the map f#: SC,(Y) —
f#(SC,(Y)) is continuous.

2. Let f be a scatteredly continuous map. Take an arbitrary map ¢ € SC,(Y"). Since the
maps ¢ and f are scatteredly continuous and Y is a regular space, the composition ¢ o f is
scatteredly continuous map according to Proposition 2. Therefore f#(SC,(Y)) C SC,(X).

3. Assume that f is an open map and f(X) = Y. Since the map f#: RY — R¥X is
a homeomorphism of the space RY onto the closed subspace f#(RY) of RX (see [3]), the
map f#: SC,(Y) — SC,(X) is a homeomorphism of the space SC,(Y’) onto the subspace
FH(SC,(Y)) of SCy(X).

We prove that f#(SC,(Y)) is a closed subspace of the space SC,(X). Take any function
Y € SC,(X) with ¢ € f#(SC,(Y)) and an arbitrary y € Y. Obviously, each function ¢
of f#(SC,(Y)) is constant on f~!(y). Then the function v is constant on f~!(y), as well.
Therefore we can find a function g: Y — R such that ¢ = go f, that is, ¥ = f#(g). Since f
is an open map, the map v is scatteredly continuous and R is a regular space, then Lemma
1(1) guarantees that the map g is scatteredly continuous. Hence ¢ € f#(SC,(Y)), that is,
the set f#(SC,(Y)) is closed in SC,(X).

4. The proof of this statement is similar to (3), and can be proved using Lemma 1(2).

5. Assume that f is scatteredly continuous and injective, ¢ € SC,(X) and W (¢, 2y, ...,
xk, €) is an arbitrary standard neighborhood of the function ¢ in SC,(X). Put y; = f(x;), i =
1,...,k. Since the map f is bijective, there is a function ¢ € SC,(Y') such that p(y;) =
¥(z;), i =1,..., k. Obviously, f#(p) € W (¥, 21, ..., x1, €), that is, the subspace f#(SC,(Y))
is dense in the space SC,(X).

Now let map f be scatteredly continuous and let f#(SC,(Y)) be dense in SC,(X).
We show that f is bijective. Assume that z; # x9, but f(xz1) = f(z2) = y. Then for
all o € fA(SCL(Y)) we have f#(p)(z1) = @(f(x2)) = () = @(f(x2)) = f#(p)(x2).
Take a function ¢ € SC,(X) with ¢ (z1) = 0 and ¢(z5) = 1. Obviously, W (¢, z1, 22, 5) N
f#SC,(Y) = @, which contradicts the fact that f#(SC,(Y)) is dense in SC,(X). O

4. Extent and normality of the spaces of scatteredly continuous maps. Recall that
two subsets A and B of a topological space X are separated, if ANB =@ and ANB = .

Lemma 2 ([3]). Let Y be a dense subspace of the product X = [[{X,: a € A} of separable
metrizable spaces X, and P C Y, () C Y. Then following conditions are equivalent:
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a) there are open subsets U and V' in X such that P C U, Q CV andUNV = &;

b) there is a countable set M C A such that the sets my(Q) and 7y (P) are separated in
(V) Cry(X) =[{Xa: o € M}.

Theorem 2. Let SC,(X) be a normal space and Y C X. Then so is the space Ty (SC,(X)).

Proof. Assume that P and @) are closed disjoint sets in the space my (SC,(X)). The space
7y (SC,(X)) is dense in RY. By Lemma 2 it is sufficient to find a countable subset Z C Y such
that the sets 7 (P) and 74(Q) are separated in 77(SC,(X)). Consider the sets P’ = 7' (P)
and Q' = m;'(Q). Since the space SC,(X) is normal, there is a countable set Z' C X such
that w4 (P') and 74/(Q') are separated in m (SC,(X)). We show that, if we replace Z’ with
the set Z = Z' NY, then the sets mz(P') = mz(P) and 77(Q’) = 7z(Q) will be separated
in m7(SC,(X)). Suppose this is not true. Assume, for example, that 7z (P’") Nclr(mz(Q')) #
@ with T' = 74(SC,(X)). Choose f € P’ so that f|z; € clr(nz(Q’)), and prove that
flz € clp(nz(Q)) with T" = w,/(SC,(X)). Take some finite set K C Z" and ¢ > 0. Put
Ky =KnY and Ky = KN (X\Y). Since |z € clr(mz(Q)), there is a map g € @, such
that |g(x) — f(z)| < e for any € K;. Then there is a map ¢’ € @ such that 7y (¢') = g.
Fix a function A’ such that h'(z) = f(x) — ¢'(z) for any = € Ky and h/(z) = 0 for all
z € X\K,. Obviously, i’ € SC,(X). Put h = k' + ¢’. Then h|y = g (that is h € ') and
|h(z) — f(z)] < € for every z € K. Since K is an arbitrary finite set, f |z € clp(m2/(Q’)).
And we obtain that the sets w7 (P') and 7z ((Q)') are not separated, which is a contradiction.
Hence, 7z (P) and mz(Q) are separated in 7z (SC,(X)). O

Proposition 4. Let X be a topological space. If SC,(X) is a normal space, then every
scattered subspace of the space X is countable.

Proof. Assume that A is a scattered subspace of X. Then 7m4(SC,(X)) = SC,(A). The
previous theorem implies the space m4(SC,(X)) is normal, and, therefore, the space SC,(A)
is normal as well. If the subspace A is scattered, then SC,(A) = R . And since the space
R4 is not normal with uncountable A, the set A is countable. n

Recall that the Lindel6f number [(X) of a space X is the smallest cardinal number m
such that each open cover of X has a subcover of size < m. Hereditary Lindel6f number

hi(X) of a space X is equal to sup{l(Y): Y C X}.
Corollary 1. If SC,(X) is a normal space, then hl(X) < .

By the extent e(X) of a topological space X we understand the smallest infinite cardinal
number m such that the cardinality of each closed discrete subspace of the space X does not
exceed m.

We define a subset A C X to be sc-embedded into a space X if for any scatteredly
continuous map f: A — R there is a scatteredly continuous map f: X — R such that
fla = f. One can show that all undividing subsets of the topological space X are sc-em-
bedded into X (see the proof of Proposition 1(3)).

Lemma 3. IfY is sc-embedded into a space X, then e(SC,(Y)) < e(SC,(X)).

Proof. Let Y be sc-embedded into X. Assume that Fy is a closed discrete subspace of
SC,(Y). Consider the restriction operator 7y : SC,(X) — SC,(Y). Due to Proposition 1(1)
this operator is continuous. For each g € Fy fix an element f, € SC,(X) such that f, €
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7y (9). Put Fx = {f,: g € Fy}. Since the restriction my |r, is bijective and continuous, the
subspace F is discrete in SC,(X). Let us prove that Fx is a closed subspace of SC,(X).
Suppose this is not true. Take some function f* € Fx\Fy. Since Fy is a closed subspace
of SC,(Y) and 7y is a continuous map, 7y '(Fy) is a closed subspace of SC,(X). Thus
f* € ny'(Fy), that is, f* € my'(g) for some g € Fy. Since {g} is an isolated point in the
subspace Fy and 7y is continuous, ﬂ?l(g) is a neighborhood of the point f* in the subspace
v (Fy). Put {f,} € 7' (g) N Fx. Then (7' (9)\{f,}) N Fx = @. And this contradicts the
fact that f* € Fy. m

Proposition 5. If a space X contains a non-scattered compact, then e(SC,(X)) > 2%,

Proof. Assume that K is a compact subspace of X. Then there is a continuous map ¢
from the space K onto a metrizable compact Y. Let p be a metric on Y and let B;(y) =
{t: p(y,t) < 3}. For cach y € Y we define the map f,: K — R as follows:

o if z € o~ (y);
fy(@) {min{i: r ¢ o Y(Bi(y))}, otherwise.

Put F = {f,: y € Y}. We show that F is a closed discrete subspace of SC,(K).

Firstly, we prove that F C SC,(K), that is, each map f, is scatteredly continuous.
Consider an arbitrary map f, € F and an arbitrary subset A C K. If A C ¢ !(y), then
fy(¢7H(y)) = 0 and the function f, is continuous at every point of A. Let A ¢~ '(y). Put
ip = min{i: f,(A) = i}. Then there is a point zy € A such that f,(z9) = . And by the
definition of the function f, this means that xo ¢ ¢ (B, (y)). Then zo € A\ *(B;,(v)),
the subset A\¢(B;,(y)) is an open subset of A and f,(A\¢ ' (B;,(y))) = 4o. Thus, the
function f, € F is continuous at the point z. And, therefore, f, is scatteredly continuous
forally e Y.

We prove that F is a closed subspace of SC,(K). Assume that we have a function
g€ F\F.

Fix a base U = {U,: a € A} of the function g in the space SC,(K). Put P, = {z €
K: f@(x) € Ua}.

The family {P,: o € A} has the finite intersection property, that is, P, N Py, N ... N
P, # @ for every finite system {ay, o, ..., a,}. Since K is a compact space, we have that
Noca Po # 9.

Fix a point z € (0,4 Pa. Take a standard neighborhood W (g, z,1) = {f € SC,(K):
l9(2) — f(2)] < 3} of the function g in a space SC,(K). If g(z) = 0, then (W (g, z, )\ fo(z)) N
F = @. And this contradicts the fact that g € F. Hence, g(z) # 0. Since for all x € K
and each f, € F we have that f,(z) € NU {0}, there is ¢ € N such that g(z) = . Fix
an element of the base U,, € U such that U,, C W(g,z,3). Since z € (] P,, we obtain
that z € P,,. And since g(z) = i, for any € K such that functions f,) lie in the
neighborhood U,,, we have f,)(2) =i and z ¢ ¢~ '(B;(¢(x))). Then for each z € P,, we
have z ¢ ¢ (Bi(¢(x))), that is, p(¢(x), ¢(z)) > 1. Obviously, point z € Int(¢ ™ (B;(¢(2)))),
but Int (¢~ 1(B;(¢(2)))) N Pa, = @. And this contradicts the fact that z € P,,.

Therefore, the subspace F is closed in SC,(K).

We prove that F is a discrete subspace of SC,(K). Take any function f, of F. Fix a point
z € ¢ *(y) and a standard neighborhood W (f,, z, 3) of the function f, in the space SC,,(K).
Then = ¢ ¢~ *(y') for each y' € Y such that y' # y. By the definition of the function f, one
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has that f, (z) > 1. Thus, W(f,, 2, 3)NF = {f,}. Therefore, F is a discrete subspace of the
space SC,(K).

Since K is a compact subspace of X, one has that K is sc-embedded into X. Hence, by
Lemma 3, e(SC,(X)) = e(SC,(K)) = 2%. O

Theorem 3 ([3]). Let X be a normal space with countable Souslin number and x(X) < 2%,
that is, the space X has a base of cardinality < 2™ at every point. Then e(X) < 280,

A space X is called k-scattered ([6], [7]) if for an arbitrary non-empty subset F' C X
there is a non-empty open subset U of X such that U N F # @ and U N F' is compact.

Theorem 4. If SC,(X) is a normal space, then every k-scattered subspace of X is countable.

Proof. Assume that SC,(X) is a normal space. We show that all compact subspaces of
X are scattered. Suppose there is a non-scattered compact K of X. In view of Theorem
2, normality of the space SC,(X) implies normality of the space mx(SC,(X)). Since K
is a closed set, applying the Proposition 1(3), we obtain that mx(SC,(X)) = SC,(K).
Since K is an uncountable compact, there is a continuous map ¢ from K onto the segment
I = 1[0,1]. Since SC,(K) is a normal space, then by Corollary 1, we have that hl(K) <
No, that is, the compact K is a hereditary Lindeléf space. And, therefore, the space K
is perfectly paracompact. Then, according to Proposition 3(4), the map o#: SC,(I) —
SC,(K) is a homeomorphism of the space SC,(I) onto the closed subspace ¢#(SC,(I))
of SC,(K). Since the space SC,(K) is normal, its closed subspace ¢#(SC,(I)) is normal
as well. And since the map ¢#: SC,(I) — ¢*(SC,(I)) is a homeomorphism, the space
SC,(I) is normal. The space SC,([) is a normal space with countable Souslin number and
x(SC,(I)) < 2%. Then, by Theorem 3, e(SC,(I)) < 2. But, applying Proposition 5, we
have that e(SC,(I)) > 2%. This contradiction proves that all compact subspaces of X are
scattered.

Let Y be a non-empty k-scattered subspace of X and let A be an arbitrary non-empty
subset of Y. Since Y is k-scattered, there is an open subset U of Y such that UN A # @
and U N A is a compact subspace of Y. Since every compact subspace of Y is compact in X,
we have that K = U N A is a compact subspace of X. Thus, K is scattered. Then there are
a point x € K and its neighborhood O(z) such that O(z) N K = {z}. And since x € U N A,
we obtain O(z) NU N A # &. The fact O(z)NUNA C O(x) NUNA = {z} implies that
(O(z) NU) N A = {x}. Therefore, the point z is an isolated point in A. Hence, the space Y’
is scattered. And, by Proposition 4, space Y is countable. O

Corollary 2. If X is a k-scattered space, then the space SC,(X) is normal if and only if X
is countable.

Recall that a space X is said to be a k-space if a set F' C X is closed if and only if for
each compact subset K C X the set F'N K is a compact in K.

Corollary 3. If X is a k-space and SC,(X) is a normal space, then X is a sequential space.

Proof. Let A be a non-closed subset of X. Then there is a compact subspace K C X such
that AN K is a non-closed subset in K. Due to Theorem 4, compact K is countable, and
therefore, K is metrizable. Thus, for each point x € AN K\ (AN K) there is a sequence from
AN K that converges to x. m
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A space X is called o-compact if it is a countable union of its compact subspaces.

Corollary 4. If X is a o-compact space, then SC,(X) is normal if and only if X is countable.
Question 1. Is there an uncountable space X such that SC,(X) is normal?
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