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A map f : X → Y between topological spaces is called scatteredly continuous if for each
non-empty subspace A ⊂ X the restriction f |A has a point of continuity. By SCp(X) we denote
the space of all scatteredly continuous real-valued functions on X endowed with the topology
of pointwise convergence.

In this paper we focus on the normality of the space SCp(X). Particularly, it is proved that
if the function space SCp(X) is normal, then all compact and all scattered subspaces of X are
countable.

Б. М. Бокало, Н. М. Колос. О нормальности пространств разрежено непрерывных ото-
бражений // Мат. Студiї. – 2011. – Т.35, №2. – C.196–204.

Отображение f : X → Y между топологическими пространствами называют разреже-
нно непрерывным, если для каждого непустого подпространства A ⊂ X сужение f |A имеет
точку непрерывности. Через SCp(X) обозначаем пространство всех разреженно непрерыв-
ных вещественных функций на пространстве X в топологии поточечной сходимости.

Исследуется нормальность пространства SCp(X). В частности, доказано, что если про-
странство SCp(X) нормально, то все компактные и все разреженные подпространства
пространства X счетны.

1. Introduction. A map f : X → Y between topological spaces is called scatteredly conti-
nuous if for each non-empty subspace A ⊂ X the restriction f |A has a point of continuity.
By SCp(X) we denote the space of all scatteredly continuous real-valued functions on X
endowed with the topology of pointwise convergence. Clearly, that the space of all conti-
nuous maps Cp(X) is a subspace of the space SCp(X), and the function space SCp(X) is
a subspace of the space RX . It is well known that the space RX is normal if and only if X is
countable. On the other hand, there are uncountable spaces X such that the function space
Cp(X) is normal, in particular if the network weight of X is countable. A natural questi-
on arises: under what conditions on a space X, is the space of all scatteredly continuous
functions SCp(X) normal? In this paper we prove, in particular, that if the function space
SCp(X) is normal, then all compact and all scattered subspaces of X are countable.

2. Terminology and notation. A “space” always means a “topological space”. By R and
Q we denote the usual spaces of real and rational numbers, respectively; N stands for the
set of integer positive numbers.

A standard base of neighborhoods of a function f : X → R in the space SCp(X) consists
of the sets of the form W (f, x1, ..., xk, ε) = {g ∈ SC(X) : |g(xi) − f(xi)| < ε, i = 1, . . . , k}
with k ∈ N, x1, . . . , xk ∈ X and ε > 0.
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For a subset A of a topological space X by clX(A) or A we denote the closure of A in X
while Int(A) stands for the interior of A in X.

Recall that a space X is called normal, if it is a T1-space and for an arbitrary pair of
disjoint closed subsets F1, F2 of X there are open subsets U1, U2 of X such that F1 ⊂ U1,
F2 ⊂ U2 and U1 ∩ U2 = ∅.

All spaces encountered in this paper (unless stated otherwise) are assumed to be Haus-
dorff. The rest of the notation and terminology is standard and can be found in [1].

3. The restriction operator and the dual map. Let Y be a subspace of a space X. By
πY : SCp(X)→ SCp(Y ) we denote the restriction operator from SCp(X) onto SCp(Y ), that
is πY (f) = f |Y for all f ∈ SCp(X). The definition of a scatteredly continuous map implies
that πY (SCp(X)) is a subspace of the space SCp(Y ).

We say that a set A is dividing (see [2]), if there is a non-empty set F such that A ∩ F =
F\A, and A is called undividing if A ∩ F 6= F\A for arbitrary non-empty set F .

Obviously, all closed, open and scattered subsets of any topological space X are undivi-
ding. In [2] it is proved that if X is a hereditary Baire perfectly paracompact space, then
a subset A of X is undividing if and only if A is an Fσ-set and Gδ-set in X.

Theorem 1 ([4]). Let f : X → Y be a scatteredly continuous map from a topological space
X to a regular topological space Y . Then each non-empty subspace A ⊂ X contains an open
(in A) dense subset U ⊂ A such that the restriction f |A : A → Y is continuous at every
point of the set U .

Proposition 1. For an arbitrary subspace Y of a topological space X the following state-
ments are true:

1. The operator πY : SCp(X)→ SCp(Y ) is continuous and πY (SCp(X)) ⊃ SCp(Y );

2. The operator πY : SCp(X)→ SCp(Y ) is an open map from SCp(X) onto the subspace
πY (SCp(X)) of SCp(Y );

3. If Y is an undividing set in X, then πY (SCp(X)) = SCp(Y );

4. If Y is a scattered subspace of a space X, then πY (SCp(X)) = RY ;

5. The operator πY is injective if and only if Y = X.

Proof. 1. Obviously, πY : SCp(X) → SCp(Y ) is continuous. We prove that πY (SCp(X)) ⊃
SCp(Y ). Take an arbitrary g ∈ SCp(Y ) and a standard neighborhood W (g, y1, ..., yn, ε) of
the point g ∈ SCp(Y ). We define a function f : X → R as follows:

f(x) =

{
0, x ∈ X\ {y1, ..., yn} ,
g(yi), x ∈ {y1, ..., yn} .

It is easy to check, that f ∈ SCp(X) and πY (f) ∈ W (g, y1, ..., yn, ε).
2. Consider an arbitrary standard open set W (f, x1, ..., xk, ε) ⊂ SCp(X). Without loss of

generality, we may assume that x1, ..., xl ∈ Y and xl+1, ..., xk ∈ X\Y with 0 ≤ l ≤ k.
Obviously, πY (W (f, x1, ..., xk, ε)) ⊂ W (πY (f), x1, ..., xl, ε) ∩ πY (SCp(X)). We show that
πY (W (f, x1, ..., xk, ε)) = W (πY (f), x1, ..., xl, ε) ∩ πY (SCp(X)), which implies that the set
πY (W (f, x1, ..., xk, ε)) is open in the space πY (SCp(X)). And this means that the operator
πY : SCp(X)→ SCp(Y ) is open.
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It remains to show that πY (W (f, x1, ..., xk, ε)) ⊃ W (πY (f), x1, ..., xl, ε) ∩ πY (SCp(X)).
Let g ∈ πY (SCp(X)) and |g(xi)− π(f)(xi)| < ε , i = 1, ..., l. Since g ∈ πY (SCp(X)), there
is a map g1 ∈ SCp(X) such that g = πY (g1). We fix a function ϕ : X → R such that

ϕ(x) =

{
0, x /∈ {xl+1, ..., xk}
f(xi)− g1(xi), x ∈ {xl+1, ..., xk} .

It is easy to check that the function ϕ is scatteredly continuous. Put h = ϕ+g1. Obviously, h ∈
W (f, x1, ..., xk, ε) and πY (h) = g. Therefore, g ∈ πY (W (f, x1, ..., xk, ε)) and the statement
(2) is proved.

3. Let Y be some non-empty undividing set in X. We show that πY (SCp(X)) = SCp(Y ).
Consider some map g ∈ SCp(Y ). Define a function f : X → R as follows:

f(x) =

{
g(x), x ∈ Y
0, x /∈ Y.

It is easy to see that πY (f) = g. Now show that f ∈ SCp(X). Let A be an arbitrary non-
empty subset of X. Put P = A ∩ Y and Q = A\Y . According to Theorem 1, the space P
contains an open (in P ) dense subspace U ⊂ P such that the restriction g |P is continuous
at every point of the set U . Put B = ((P\Q̄) ∩ U) ∪ (Q\P̄ ). Since Y is an undividing set in
X and U is dense in P , the set B 6= ∅. Obviously, the restriction f |A is continuous at every
point of the set B.

4. Since every scattered subspace of a topological space is an undividing set, then state-
ment 3 of this proposition implies that πY (SCp(X)) = SCp(Y ). Since Y is scattered,
SCp(Y ) = RY .

5. Assume that Y 6= X. Fix an arbitrary point x0 ∈ X\Y and maps f1 : X → R and
f2 : X → R , which are defined as follows:

f1(x) =

{
0, x ∈ X\ {x0}
1, x = x0

, f2(x) =

{
0, x ∈ X\ {x0}
2, x = x0

Observe that f1, f2 ∈ SCp(X) , f1 6= f2, but πY (f1) = πY (f2). Thus, the map πY is not
injective.

Proposition 2. Let f : X → Y and g : Y → Z be scatteredly continuous maps and let Y
be a regular space. Then the composition g ◦ f : X → Z is a scatteredly continuous map.

Proof. Let A be an arbitrary subspace of X. By Theorem 1, the space A contains an open
(in A) dense subspace U ⊂ A such that the restriction f |A is continuous at every point of
the set U . Using the scattered continuity of g, we find a continuity point y ∈ f(U) of the
map g

∣∣
f(U) . Take an arbitrary point x ∈ f−1(y) ∩ U and notice that the composition g ◦ f

is continuous at the point x.

The following example shows that the regularity of the space Y in the previous proposition
is essential.

Example 1. Let f : R → RQ be the identity map from the real line equipped with the
standard topology τ to the real line endowed with the topology generated by the subbase
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τ ∪ {Q}. Let χQ : R → {0; 1} denote the characteristic function of the set Q. It is easy to
show that the maps f : R→ RQ and χQ : R→ {0; 1} are scatteredly continuous while their
composition χQ◦f : R→ {0; 1} is everywhere discontinuous (and hence fails to be scatteredly
continuous).

Recall that a space X is called a Preiss-Simon space if for an arbitrary non-empty closed
subset A of X and each point x ∈ A there is a sequence {Un : n ∈ N} of non-empty open
subsets of A that converges to x in the sense that each neighborhood of x contains all but
finitely many sets Un.

Lemma 1. Let f be a surjective map from a topological space X onto a topological space Y
and g be a map from the space Y to some topological space Z. Then scattered continuity of
the map g ◦ f implies the scattered continuity of the map g if one of the following conditions
is satisfied:

1) the map f : X → Y is open;

2) the map f : X → Y is closed, the space X is perfectly paracompact, Y is a hereditary
Baire Preiss-Simon space and Z is a regular space.

Proof. 1. Assume that the map ϕ = g◦f is scatteredly continuous and let f be an open map.
To show that g is scatteredly continuous, fix a non-empty subset B ⊂ Y and let A = f−1(B).
It follows that f |A : A→ B is an open map. Since the map ϕ is scatteredly continuous, the
restriction ϕ |A : A→ Z has a continuity point x0 ∈ A. We show that the map g |B : B → Z
is continuous at the point y0 = f(x0). Assume that O(g(y0)) is a neighborhood of the point
g(y0) in Z. Since ϕ(x0) = g(y0), there is a neighborhood O(x0) of the point x0 in the
subspace A such that ϕ(O(x0)) ⊂ O(g(y0)). Since the restriction f |A : A→ B is an open
map, one has that f(O(x0)) is a neighborhood of the point y0. It is easy to deduce that
g(f(O(x0))) = ϕ(O(x0)) ⊂ O(g(y0)).

2. In [5], in particular, is proved that a map g from a hereditary Baire Preiss-Simon space
Y to a regular space Z is scatteredly continuous if for any open subset in Z its preimage is
a Gδ-set in Y . Suppose g is not a scatteredly continuous map. Then there is an open set U
in Z such that g−1(U) is not Gδ-set in Y .

On the other hand, since g ◦f is a scatteredly continuous map from a perfectly paracom-
pact space X to a regular space Z, we obtain that (g ◦ f)−1(U) is a Gδ-set in X (see [5]).

Put A = (g ◦ f)−1(U) ⊂ X. Then f(A) = g−1(U). Since A is a Gδ-set in X, we have that
X\A is an Fσ-set in X, that is, X\A =

⋃
{Fi : i ∈ N} where each Fi is a closed subset in X.

Then f(X\A) =
⋃
f(Fi) is an Fσ-set in Y . But then Y \f(X\A) = g−1(U) is a Gδ-set in Y ,

which is a contradiction.

Example 2. Assume that f is a map from a scattered uncountable compact space X to
the segment Y = [0, 1], and g : [0, 1] → R is the characteristic function of the set Q. The
spaces X and Y are both compact. Obviously, the maps g ◦ f : X → R and f are scatteredly
continuous. But the characteristic function g : [0, 1]→ R is not scatteredly continuous.

Each f : X → Y induces a dual map f# : RY → RX that assigns to each function ϕ ∈ RY ,
the composition f#(ϕ) = ϕ ◦ f .

Proposition 3. Let X and Y be topological spaces and let f be a mapping of X to Y .
Then the following statements are true:
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1. The map f# : SCp(Y )→ f#(SCp(Y )) is continuous.

2. If the map f is scatteredly continuous and the space Y is regular, then f#(SCp(Y )) ⊂
SCp(X).

3. Let f be open scatteredly continuous surjective map and let Y be regular. Then f#

is a homeomorphism of the space SCp(Y ) onto the closed subspace f#(SCp(Y )) of
SCp(X).

4. Let f be a closed scatteredly continuous surjective map, let X be perfectly paracompact
and let Y be a hereditary Baire Preiss-Simon space. Then f# is a homeomorphism of
the space SCp(Y ) onto the closed subspace f#(SCp(Y )) of SCp(X).

5. If f is scatteredly continuous then f is injective if and only if f#(SCp(Y )) is dense in
SCp(X).

Proof. 1. In [3], in particular, is proved that the map f# : RY → RX is continuous for an
arbitrary map f : X → Y and arbitrary sets X and Y . Thus, the map f# : SCp(Y ) →
f#(SCp(Y )) is continuous.

2. Let f be a scatteredly continuous map. Take an arbitrary map ϕ ∈ SCp(Y ). Since the
maps ϕ and f are scatteredly continuous and Y is a regular space, the composition ϕ ◦ f is
scatteredly continuous map according to Proposition 2. Therefore f#(SCp(Y )) ⊂ SCp(X).

3. Assume that f is an open map and f(X) = Y . Since the map f# : RY → RX is
a homeomorphism of the space RY onto the closed subspace f#(RY ) of RX (see [3]), the
map f# : SCp(Y ) → SCp(X) is a homeomorphism of the space SCp(Y ) onto the subspace
f#(SCp(Y )) of SCp(X).

We prove that f#(SCp(Y )) is a closed subspace of the space SCp(X). Take any function
ψ ∈ SCp(X) with ψ ∈ f#(SCp(Y )) and an arbitrary y ∈ Y . Obviously, each function ϕ
of f#(SCp(Y )) is constant on f−1(y). Then the function ψ is constant on f−1(y), as well.
Therefore we can find a function g : Y → R such that ψ = g ◦ f , that is, ψ = f#(g). Since f
is an open map, the map ψ is scatteredly continuous and R is a regular space, then Lemma
1(1) guarantees that the map g is scatteredly continuous. Hence ψ ∈ f#(SCp(Y )), that is,
the set f#(SCp(Y )) is closed in SCp(X).

4. The proof of this statement is similar to (3), and can be proved using Lemma 1(2).
5. Assume that f is scatteredly continuous and injective, ψ ∈ SCp(X) and W (ψ, x1, ...,

xk, ε) is an arbitrary standard neighborhood of the function ψ in SCp(X). Put yi = f(xi), i =
1, ..., k. Since the map f is bijective, there is a function ϕ ∈ SCp(Y ) such that ϕ(yi) =
ψ(xi), i = 1, ..., k. Obviously, f#(ϕ) ∈ W (ψ, x1, ..., xk, ε), that is, the subspace f#(SCp(Y ))
is dense in the space SCp(X).

Now let map f be scatteredly continuous and let f#(SCp(Y )) be dense in SCp(X).
We show that f is bijective. Assume that x1 6= x2, but f(x1) = f(x2) = y. Then for
all ϕ ∈ f#(SCp(Y )) we have f#(ϕ)(x1) = ϕ(f(x2)) = ϕ(y) = ϕ(f(x2)) = f#(ϕ)(x2).
Take a function ψ ∈ SCp(X) with ψ(x1) = 0 and ψ(x2) = 1. Obviously, W (ψ, x1, x2,

1
2
) ∩

f#SCp(Y ) = ∅, which contradicts the fact that f#(SCp(Y )) is dense in SCp(X).

4. Extent and normality of the spaces of scatteredly continuous maps. Recall that
two subsets A and B of a topological space X are separated, if A ∩B = ∅ and A ∩B = ∅.

Lemma 2 ([3]). Let Y be a dense subspace of the product X =
∏
{Xα : α ∈ A} of separable

metrizable spaces Xα and P ⊂ Y,Q ⊂ Y . Then following conditions are equivalent:
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a) there are open subsets U and V in X such that P ⊂ U , Q ⊂ V and U ∩ V = ∅;

b) there is a countable set M ⊂ A such that the sets πM(Q) and πM(P ) are separated in
πM(Y ) ⊂ πM(X) =

∏
{Xα : α ∈M}.

Theorem 2. Let SCp(X) be a normal space and Y ⊂ X. Then so is the space πY (SCp(X)).

Proof. Assume that P and Q are closed disjoint sets in the space πY (SCp(X)). The space
πY (SCp(X)) is dense in RY . By Lemma 2 it is sufficient to find a countable subset Z ⊂ Y such
that the sets πZ(P ) and πZ(Q) are separated in πZ(SCp(X)). Consider the sets P ′ = π−1Y (P )
and Q′ = π−1Y (Q). Since the space SCp(X) is normal, there is a countable set Z ′ ⊂ X such
that πZ′(P ′) and πZ′(Q′) are separated in πZ′(SCp(X)). We show that, if we replace Z ′ with
the set Z = Z ′ ∩ Y, then the sets πZ(P ′) = πZ(P ) and πZ(Q′) = πZ(Q) will be separated
in πZ(SCp(X)). Suppose this is not true. Assume, for example, that πZ(P ′)∩ clT (πZ(Q′)) 6=
∅ with T = πZ(SCp(X)). Choose f ∈ P ′ so that f |Z ∈ clT (πZ(Q′)), and prove that
f |Z′ ∈ clT ′(πZ′(Q′)) with T ′ = πZ′(SCp(X)). Take some finite set K ⊂ Z ′ and ε > 0. Put
K1 = K ∩ Y and K2 = K ∩ (X\Y ). Since f |Z ∈ clT (πZ(Q)), there is a map g ∈ Q, such
that |g(x)− f(x)| < ε for any x ∈ K1. Then there is a map g′ ∈ Q′ such that πY (g′) = g.
Fix a function h′ such that h′(x) = f(x) − g′(x) for any x ∈ K2 and h′(x) = 0 for all
x ∈ X\K2. Obviously, h′ ∈ SCp(X). Put h = h′ + g′. Then h |Y = g (that is h ∈ Q′) and
|h(x)− f(x)| < ε for every x ∈ K. Since K is an arbitrary finite set, f |Z′ ∈ clT ′(πZ′(Q′)).
And we obtain that the sets πZ′(P ′) and πZ′(Q′) are not separated, which is a contradiction.
Hence, πZ(P ) and πZ(Q) are separated in πZ(SCp(X)).

Proposition 4. Let X be a topological space. If SCp(X) is a normal space, then every
scattered subspace of the space X is countable.

Proof. Assume that A is a scattered subspace of X. Then πA(SCp(X)) = SCp(A). The
previous theorem implies the space πA(SCp(X)) is normal, and, therefore, the space SCp(A)
is normal as well. If the subspace A is scattered, then SCp(A) = RA . And since the space
RA is not normal with uncountable A, the set A is countable.

Recall that the Lindelöf number l(X) of a space X is the smallest cardinal number m
such that each open cover of X has a subcover of size 6 m. Hereditary Lindelöf number
hl(X) of a space X is equal to sup{l(Y ) : Y ⊂ X}.

Corollary 1. If SCp(X) is a normal space, then hl(X) ≤ ℵ0.

By the extent e(X) of a topological space X we understand the smallest infinite cardinal
number m such that the cardinality of each closed discrete subspace of the space X does not
exceed m.

We define a subset A ⊂ X to be sc-embedded into a space X if for any scatteredly
continuous map f : A → R there is a scatteredly continuous map f̃ : X → R such that
f̃ |A = f . One can show that all undividing subsets of the topological space X are sc-em-
bedded into X (see the proof of Proposition 1(3)).

Lemma 3. If Y is sc-embedded into a space X, then e(SCp(Y )) 6 e(SCp(X)).

Proof. Let Y be sc-embedded into X. Assume that FY is a closed discrete subspace of
SCp(Y ). Consider the restriction operator πY : SCp(X)→ SCp(Y ). Due to Proposition 1(1)
this operator is continuous. For each g ∈ FY fix an element fg ∈ SCp(X) such that fg ∈
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π−1Y (g). Put FX = {fg : g ∈ FY }. Since the restriction πY |FX
is bijective and continuous, the

subspace FX is discrete in SCp(X). Let us prove that FX is a closed subspace of SCp(X).
Suppose this is not true. Take some function f ∗ ∈ FX\FX . Since FY is a closed subspace
of SCp(Y ) and πY is a continuous map, π−1Y (FY ) is a closed subspace of SCp(X). Thus
f ∗ ∈ π−1Y (FY ), that is, f ∗ ∈ π−1Y (g) for some g ∈ FY . Since {g} is an isolated point in the
subspace FY and πY is continuous, π−1Y (g) is a neighborhood of the point f ∗ in the subspace
π−1Y (FY ). Put {fg} ∈ π−1Y (g) ∩ FX . Then (π−1Y (g)\{fg}) ∩ FX = ∅. And this contradicts the
fact that f ∗ ∈ FX .

Proposition 5. If a space X contains a non-scattered compact, then e(SCp(X)) > 2ℵ0 .

Proof. Assume that K is a compact subspace of X. Then there is a continuous map ϕ
from the space K onto a metrizable compact Y . Let ρ be a metric on Y and let Bi(y) =
{t : ρ(y, t) 6 1

i
}. For each y ∈ Y we define the map fy : K → R as follows:

fy(x) =

{
0, if x ∈ ϕ−1(y);

min{i : x /∈ ϕ−1(Bi(y))}, otherwise.

Put F = {fy : y ∈ Y }. We show that F is a closed discrete subspace of SCp(K).
Firstly, we prove that F ⊂ SCp(K), that is, each map fy is scatteredly continuous.

Consider an arbitrary map fy ∈ F and an arbitrary subset A ⊂ K. If A ⊂ ϕ−1(y), then
fy(ϕ

−1(y)) = 0 and the function fy is continuous at every point of A. Let A * ϕ−1(y). Put
i0 = min{i : fy(A) = i}. Then there is a point x0 ∈ A such that fy(x0) = i0. And by the
definition of the function fy this means that x0 /∈ ϕ−1(Bi0(y)). Then x0 ∈ A\ϕ−1(Bi0(y)),
the subset A\ϕ−1(Bi0(y)) is an open subset of A and fy(A\ϕ−1(Bi0(y))) = i0. Thus, the
function fy ∈ F is continuous at the point x0. And, therefore, fy is scatteredly continuous
for all y ∈ Y .

We prove that F is a closed subspace of SCp(K). Assume that we have a function
g ∈ F\F .

Fix a base U = {Uα : α ∈ A} of the function g in the space SCp(K). Put Pα = {x ∈
K : fϕ(x) ∈ Uα}.

The family {Pα : α ∈ A} has the finite intersection property, that is, Pα1 ∩ Pα2 ∩ ... ∩
Pαn 6= ∅ for every finite system {α1, α2, ..., αn}. Since K is a compact space, we have that⋂
α∈A Pα 6= ∅.
Fix a point z ∈

⋂
α∈A Pα. Take a standard neighborhood W (g, z, 1

2
) = {f ∈ SCp(K) :

|g(z)−f(z)| < 1
2
} of the function g in a space SCp(K). If g(z) = 0, then (W (g, z, 1

2
)\fϕ(z))∩

F = ∅. And this contradicts the fact that g ∈ F . Hence, g(z) 6= 0. Since for all x ∈ K
and each fy ∈ F we have that fy(x) ∈ N ∪ {0}, there is i ∈ N such that g(z) = i. Fix
an element of the base Uα0 ∈ U such that Uα0 ⊂ W (g, z, 1

2
). Since z ∈

⋂
Pα, we obtain

that z ∈ Pα0 . And since g(z) = i, for any x ∈ K such that functions fϕ(x) lie in the
neighborhood Uα0 , we have fϕ(x)(z) = i and z /∈ ϕ−1(Bi(ϕ(x))). Then for each x ∈ Pα0 we
have z /∈ ϕ−1(Bi(ϕ(x))), that is, ρ(ϕ(x), ϕ(z)) > 1

i
. Obviously, point z ∈ Int(ϕ−1(Bi(ϕ(z)))),

but Int(ϕ−1(Bi(ϕ(z)))) ∩ Pα0 = ∅. And this contradicts the fact that z ∈ Pα0 .
Therefore, the subspace F is closed in SCp(K).
We prove that F is a discrete subspace of SCp(K). Take any function fy of F . Fix a point

x ∈ ϕ−1(y) and a standard neighborhoodW (fy, x,
1
2
) of the function fy in the space SCp(K).

Then x /∈ ϕ−1(y′) for each y′ ∈ Y such that y′ 6= y. By the definition of the function fy′ one
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has that fy′(x) > 1. Thus, W (fy, x,
1
2
)∩F = {fy}. Therefore, F is a discrete subspace of the

space SCp(K).
Since K is a compact subspace of X, one has that K is sc-embedded into X. Hence, by

Lemma 3, e(SCp(X)) > e(SCp(K)) > 2ℵ0 .

Theorem 3 ([3]). Let X be a normal space with countable Souslin number and χ(X) 6 2ℵ0 ,
that is, the space X has a base of cardinality 6 2ℵ0 at every point. Then e(X) < 2ℵ0 .

A space X is called k-scattered ([6], [7]) if for an arbitrary non-empty subset F ⊂ X
there is a non-empty open subset U of X such that U ∩ F 6= ∅ and U ∩ F is compact.

Theorem 4. If SCp(X) is a normal space, then every k-scattered subspace ofX is countable.

Proof. Assume that SCp(X) is a normal space. We show that all compact subspaces of
X are scattered. Suppose there is a non-scattered compact K of X. In view of Theorem
2, normality of the space SCp(X) implies normality of the space πK(SCp(X)). Since K
is a closed set, applying the Proposition 1(3), we obtain that πK(SCp(X)) = SCp(K).
Since K is an uncountable compact, there is a continuous map ϕ from K onto the segment
I = [0, 1]. Since SCp(K) is a normal space, then by Corollary 1, we have that hl(K) 6
ℵ0, that is, the compact K is a hereditary Lindelöf space. And, therefore, the space K
is perfectly paracompact. Then, according to Proposition 3(4), the map ϕ# : SCp(I) →
SCp(K) is a homeomorphism of the space SCp(I) onto the closed subspace ϕ#(SCp(I))
of SCp(K). Since the space SCp(K) is normal, its closed subspace ϕ#(SCp(I)) is normal
as well. And since the map ϕ# : SCp(I) → ϕ#(SCp(I)) is a homeomorphism, the space
SCp(I) is normal. The space SCp(I) is a normal space with countable Souslin number and
χ(SCp(I)) 6 2ℵ0 . Then, by Theorem 3, e(SCp(I)) < 2ℵ0 . But, applying Proposition 5, we
have that e(SCp(I)) > 2ℵ0 . This contradiction proves that all compact subspaces of X are
scattered.

Let Y be a non-empty k-scattered subspace of X and let A be an arbitrary non-empty
subset of Y . Since Y is k-scattered, there is an open subset U of Y such that U ∩ A 6= ∅
and U ∩ A is a compact subspace of Y . Since every compact subspace of Y is compact in X,
we have that K = U ∩ A is a compact subspace of X. Thus, K is scattered. Then there are
a point x ∈ K and its neighborhood O(x) such that O(x)∩K = {x}. And since x ∈ U ∩ A,
we obtain O(x) ∩ U ∩ A 6= ∅. The fact O(x) ∩ U ∩ A ⊂ O(x) ∩ U ∩ A = {x} implies that
(O(x) ∩ U) ∩ A = {x}. Therefore, the point x is an isolated point in A. Hence, the space Y
is scattered. And, by Proposition 4, space Y is countable.

Corollary 2. If X is a k-scattered space, then the space SCp(X) is normal if and only if X
is countable.

Recall that a space X is said to be a k-space if a set F ⊆ X is closed if and only if for
each compact subset K ⊆ X the set F ∩K is a compact in K.

Corollary 3. If X is a k-space and SCp(X) is a normal space, then X is a sequential space.

Proof. Let A be a non-closed subset of X. Then there is a compact subspace K ⊂ X such
that A ∩ K is a non-closed subset in K. Due to Theorem 4, compact K is countable, and
therefore, K is metrizable. Thus, for each point x ∈ A ∩K\(A∩K) there is a sequence from
A ∩K that converges to x.
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A space X is called σ-compact if it is a countable union of its compact subspaces.

Corollary 4. IfX is a σ-compact space, then SCp(X) is normal if and only ifX is countable.

Question 1. Is there an uncountable space X such that SCp(X) is normal?
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